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Introduction
The September 1987 issue of The Horological Journal featured 
an article by Peter B. Wills MBHI, entitled ‘The Free 
Dynadromic Pendulum’1. To the best of our knowledge, 
Peter’s clock is unique: it is not driven by an escapement or 
a solenoid. Instead, it is energised by periodically lifting and 
dropping the entirety of the pendulum, including the support.

Peter’s pendulum falls into a class of ‘parametric oscillators’. 
These derive their energy from the variation of one of their 
basic system parameters2, as opposed to being driven by an 
external action. 

From the equation for the beat time T = π√(l/g) (using T 
here as a single beat rather than the usual period which would 
be double) we know that the basic parameters of a pendulum 
are l and g, respectively the length and the acceleration due to 
gravity.In Peter’s pendulum, the carefully timed accelerations 
of the lifting and dropping have the effect of seemingly 
varying g.

In this article, I describe a parametrically driven pendulum 
of an alternative type. It is energised by variation of its length l,  

namely by raising and lowering the bob in synchronicity 
with the beat. Figure 1 shows the overall construction of 
a one-second pendulum. The set-up is experimental and 
prototypical, largely made of materials and components lying 
around in the workshop.

Parametric excitation is extensively studied in the scientific 
domain, often in relation to the playground swing problem, 
or to coupled pendulums and chaos theory3, 4. Parametric 
oscillation, or parametric amplification, is used in a variety 
of devices. One can excite LC oscillators by variation of 
the capacitance C, using a varactor (a varactor is a type of 
diode, used as a variable capacitor by varying the voltage 
across it). Optical and microwave parametric oscillators and 
amplifiers are well known. However, to my knowledge, no 
serious attempt has been made to use variation of length for 
driving a horological pendulum. Luckily, the application to a 
horological pendulum requires only the very simplest part of 
the theory.

How This Pendulum Works
To gain an understanding of how this works, we can think of 
the pendulum as a child on a swing3. In this analogy, normal 
pendulums correspond to children being pushed by parents, 
who play the role of the escapement or solenoid. In contrast, 
parametrically driven pendulums correspond to children who 
swing themselves. 

The easiest analogy is with swinging in standing position. 
The child stands up (raises the centre of gravity) when the 
swing is at the bottom point, and squats down (lowers the 
centre of gravity) at the extremes of the swing. In doing so, 

it performs mechanical 
work, which energises 
the swing.

Similarly, as shown 
in Figure 2, our 
pendulum contains a 
mechanism – in this 
case a stepper-motor 
linear actuator – which 
raises and lowers a 
moving part of the bob 
mass in synchronicity 
with the swing. It 
raises the bob near the 

Figure 1. Overall view of the pendulum – its experimental nature is evident. 

Figure 2. Detail of 
the raising/lowering 
mechanism. 
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bottom point of the swing, and lowers it near the amplitude 
point. Like the child, the mechanism performs mechanical 
work, which energises the pendulum.

Let’s analyse an idealised model of a simple pendulum in 
which the bob-raisings and lowerings occur instantaneously. 
Then, at the bottom point, the mechanism performs 
mechanical work against the sum of the centrifugal force 
and gravity. Whereas, at the extremes of swing, there is no 
centrifugal force, so the mechanism recovers less mechanical 
work than it has performed at the bottom point. 

The result is a positive net amount of work. For the 
pendulum motion to be sustained, or grow, this work must 
offset the mechanical losses, as expressed through the quality 
factor Q. The ‘Appendix’ at the end of this feature gives the 
calculation in some detail. The result is that for this idealised 
pendulum, with a quality factor Q , to swing sustainably, the 
minimum length variation ∆l is given by:

Technical Details
In this section we provide further technical details. Figure 2
shows the essentials of the mechanism. As mentioned 
previously, it consists of a stepper-motor linear actuator, 
supported on the 5 mm pendulum rods. Its moving end is 
connected to the ‘moving mass’, the thicker of the two steel 
cylindrical discs, and it can move this up and down. Two 
springs are added in order to reduce the load on the actuator. 
At the bottom we see the fixed mass, the shorter of the two 
discs. The central bronze tube serves as a slide bearing for 
the moving mass and as a mount for a 1 mW solid-state laser, 
which points downwards.

Figure 3 illustrates the top of the pendulum. It shows a 
standard support, a spring made of feeler gauges, and the thin 
wires that power the actuator and the laser-diode.

This gives a value of about 0.2 mm for a 1 s (or 1 m) 
pendulum with a Q of 5000. In reality, any moving body has 
limits on velocity and acceleration, so that the raising and 
lowering are spread over an arc of the beat. Larger values for 
∆l, in our case around 0.5 to 1 mm, are then required.

Two more important features are to be noted. Firstly, the 
excitation frequency of a parametric device is always double 
the system frequency: the child stands/squats once per beat, 
hence twice for one full swing period. 
Secondly,  because  the  energy  gain  ∆E is linearly 

proportional to the energy E itself, E will grow exponentially 
for a given ∆l. If continually excited, the amplitude will keep 
increasing, until some non-linearity sets in, or something 
breaks. It is, therefore, necessary to apply feedback control 
over the amplitude. Once the pendulum reaches a certain 
required amplitude, the feedback system stops the excitation. 
The amplitude then decays, and the feedback system resumes 
excitation. With the current programming, we use sequences 
of  10  excitation  beats with ∆l of 1 mm. These will then be 
followed by around 13 idle beats.

Finally, we must examine the equivalent of the escapement 
effect, i.e. the effect of the excitation on the beat-time. Firstly, 
we now have a pendulum with two lengths. Secondly, when 
excitation is active, we are adding kinetic energy throughout 
the lower part of the beat; an action that is directly equivalent 
to the action of an escapement or solenoid. 

To minimise these effects, we adopt a more sophisticated 
excitation strategy than that described for the child on the 
swing. Instead of simply moving the bob ‘up, down’, we adopt 
a strategy of ‘half-down 1 (at one extreme of swing); full-
up (around the bottom point); half-down 2 (at the opposite 
extreme of swing)’. 

This largely cancels the two-lengths effect because the 
average length for an excited beat and an idle beat are nearly the 
same. As a further step, reducing ‘half-down 1’ and increasing 
by an equal amount ‘half-down 2’ will slightly reduce the time 
of an excited beat, and vice-versa. With the help of accurate 
measurements, we can equalise the durations of excited and 
idle beats, thereby eliminating any ‘escapement effect’.

∆l    π (1)≥l 3 Q

Figure 3. Detail of the support, pendulum spring and wires that power 
the stepper motor and laser-diode.

The laser-diode points down on to an array of five photo-
diodes, as shown in Figure 4. These correspond to bottom, 
left and right extremes of swing, and two intermediate swing 
angles. The circuit board contains simple signal-processing 
electronics. The figure also shows the first of two system-on-
chip boards (an Arduino Due).

Figure 5 shows a block diagram of the control system. 
The photo-diode signals feed into the first system-on-chip 
board. Based on the detector signals, and using noise and 
interference limiting measures, this system initiates the up/
down movements of the ‘movable mass’. It decides when 
excitations are necessary, and so implements the amplitude 
feedback. It passes requests for ‘half-down1’, full up’, ‘half-
down 2’ to a second system-on-chip board (an Arduino Uno), 
which is responsible for generating the motion sequences for 
the stepper motor. 
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Figure 4. The detector board with an array of five photo-diodes, with the laser spot visible on the 
middle one. 

•
•
•

•
•
•

∆L: up/down 

Figure 5. A schematic of the motion control system. 

To obtain smooth motor movements, 
these sequences need to involve 
acceleration and deceleration. This 
second system-on-chip board passes 
step/direction signals to the stepper 
motor’s power driver which, in  
turn, energises the two stepper  
motor windings.

Both Arduinos interface with a PC, 
via USB serial connections. The PC 
runs a dedicated application that allows 
manual control of the stepper motor 
position, needed to set the pendulum’s 
mid-position. It also displays extensive 
information for each beat, and writes 
log files which are subsequently 
analysed using MATLAB.

Initial Results
The pendulum has been operating now 
for a couple of weeks in the current 
configuration, and with the current 
software version.

First results were obtained from 
calibration against Global Positioning 
System (GPS) time, using a small GPS 
module with ‘pulse-per-second’ output. 
Figure 6 shows that, over a period 
of one-week, the deviation between 
the pendulum and the GPS, sam- 
pled hourly, varies between +370 ms 
and −770 ms. 

The variation is smooth, and is no 
doubt mostly driven by temperature 
changes. Given the experimental 
nature of the setup, and the absence of 
any temperature compensation, we may 
conclude these results are sufficiently 
encouraging to continue exploration, 
and to develop an improved version of 
the pendulum.

Secondly, we can clearly show the 
effect of the excitation strategy – the 
‘half-downs’ versus the ‘ups’ – on the 
‘escapement effect’. Figure 7 shows 
the duration of 15,000 periods (30,000 
beats) for an excitation where ‘half-
down 1’ is 0.525 mm, ‘half-down 2’ is 
0.475 mm and ‘up’ is, of course, 1mm. 
The green dots represent idle periods, 
i.e. periods without excitation, whereas 
the red dots represent periods with 
excitation. There is a clear separation, 
with 19 micro-seconds’ difference 
between the averages. This is the 
‘escapement effect’.

In contrast, Figure 8 shows similar 
data for an excitation with ‘half-down 
1’ equals ‘half-down 2’, at 0.5 mm. The 
period durations are now very close, 
with a difference of 4 micro-seconds 
between the averages: the ‘escapement 
effect’ is much reduced.

Figure 6. First results of a comparison of the pendulum with GPS time over a one-week period. The 
x-axis shows the elapsed time in hours, the y-axis shows the deviation between pendulum and GPS 
time in milliseconds. Data taken hourly.
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Red: hourly data points, Blue: least squares fit
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The figures do not show some of the subtleties to do with 
start and end of excitation sequences. However, it is clear that, 
with some additional tuning, we can arrive at a situation where 
the excitation does not affect the period. The ‘escapement 
effect’ can be eliminated or, at least, made negligibly small.

Next Steps and Possible Directions
Our first objective will be to create an improved version of the 
pendulum. It should incorporate a number of technical and 
aesthetical improvements, and be built on a stand-alone base: 
something that can be displayed and turned into a clock. It 
should incorporate temperature compensation, which we will 
try to integrate in the length-variation mechanism.

In the longer term, one can think about more experimental 
work. It will be tempting to try to use the parametric excitation 
principle for a balance, for which the moment of inertia can 
be altered by varying the effective radius.

It is also interesting to speculate on the question of the 
ultimate accuracy that might be achieved. Obviously, the 
open-loop stepper-motor approach, while ideal for a first 
try, has its limits. For the next version, we may replace it 
with some form of eccentric mechanism. One can, however, 
think of far more accurate – and temperature-independent 
– means to control the position of the movable mass by the 
use of modern (but expensive) optical devices, as used in high-
precision machining.

In Conclusion
I have described the construction of a parametrically-excited 
pendulum, which operates by variation of the effective 
pendulum length. The pendulum is experimental, made from 
easily available materials and components. First results on 
accuracy and stability, obtained from a week-long comparison 
with GPS-time, are encouraging.

Furthermore, this research has shown that, by judicious 
choice of the excitation strategy, it is possible to suppress the 
(equivalent of the) escapement effect. It is a good basis for 
further work and I hope that this article will give inspiration 
to others to explore this ‘unusual pendulum’, and thereby 
contribute to the general interest in horology.
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Appendix
In this appendix, following reference 3, we calculate – for an 
ideal model case – the variation of length required to sustain 
or grow the amplitude of the pendulum’s motion.

In the following: m is the pendulum’s mass; g is the 
acceleration due to gravity; l  is  the  length; ∆l is the length 
variation; v is the linear velocity at the bottom point; φ is the 
angle of swing; E is the pendulum’s energy; Q is the quality 
factor, and L is angular momentum.

At the bottom point, our mechanism raises the bob – 
instantaneously  –  by  an  amount  ∆l. In doing so, it acts 
against gravity and against centrifugal force. It performs a 
mechanical work equal to:

At the extremum, the mechanism recovers work. Here, 
there is no centrifugal force, and for the work recovered from 
gravity we need to take the vertical component. Consequently, 
the work recovered equals:

(2)WBottom = m g + m v2

l
∆l( (

(4)E = = m g l (1− cos φ)m v2

l

(3)WExtremum = m g cos(φ)∆l

We now eliminate both v and φ by using the pendulum 
energy equation:

Figure 7. Illustration of the ‘escapement effect’ for 15,000 cycles.  
Green dots represent idle beats, red dots represent excited beats.  
We see an average separation of 19 micro-seconds.

Figure 8. Reduction of the ‘escapement effect’ by tuning the excitation 
details. Green dots represent idle beats, red dots represent excited 
beats. The average separation is reduced to 4 micro-seconds.
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This results in work performed:

(5)WBottom = m g + 2E
l

∆l( (

(6)WExtremum = m g + E
l

∆l( (

(11)∆E = ∆ = m v ∆ v = ∆ lm v2

2
m v2

l( (

(7)∆E = 3 E ∆l
l

(10)∆v = v∆l
l

(8)∆ELoss =
πE
Q

(9)≥∆l
l

π
3Q

And work recovered:

The net energy gain for one beat is then:

The energy loss for one beat is expressed in terms of the 
quality factor Q as:

The condition for the pendulum to sustain or increase its 
amplitude is that ∆E is equal to or greater than ∆ELoss. This 
condition is fulfilled for:

NOTE: The gain in kinetic energy at the bottom point can 
also be described as an effect of conservation of angular 
momentum L=m l v. The pendulum is a rotating system, so 
that L is conserved over the event of raising the bob. 

This implies that lbefore vbefore = lafter vafter. In the same way a 
pirouette skater increases speeds by pulling in arms, the 
pendulum increases its velocity by becoming shorter. 

We can rewrite the equation as:

The energy gain then is:

Which is the same result obtained above, in the expression 
for WBottom, second term.
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