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(1) Introduction
The Antikythera Mechanism – its discovery, history and 
interpretation – has been well documented (see, for example, 
Jones, 2017, Freeth et al, 2021, or search ‘Antikythera’ on 
YouTube1). Here, we are particularly, but not exclusively, 
concerned with the claim (Budiselic et al, 20212, hereinafter 
referred to as BTDR) that the front dial of the mechanism, 
specifically fragment C, contains evidence of an Egyptian 
lunar year.

Fragment C of the Antikythera Mechanism includes some 
80 degrees of two concentric annuli. The outer one is known 
as the calendar ring because it is inscribed in Greek with the 
names of three Egyptian months; the inner one is known as 
the zodiac ring (see ‘Figure 1’ of BTDR). The calendar ring is 
located in a shallow channel in the front dial plate, in which it 
was, presumably, free to move except when pinned to one of 
the holes in the channel. 

The long-standing assumption, based largely on the fact 
that it includes named Egyptian months, is that the outer 
wheel had 365 equal divisions corresponding to the number 
of days in the Egyptian civil calendar. This assumption has 
been challenged by BTDR, based on their measurements of 
X-ray tomographic images of the holes in the channel below 
the ring, assumed to correspond to the divisions marked on it. 

They conclude, with supporting statistical evidence, that 
the number of divisions, N, is more likely to be 354, which 
would be the number of days in a lunar year, i.e. 12 lunar 
months of 29.5 solar days. The number N is of importance 
for its implications not only regarding the Antikythera 
Mechanism, but also for the study of ancient calendars.

As outsiders with no preconceptions, we have presumed 
to re-examine the evidence for the value of N (365, 354, or 
neither), basing our study purely on the measured positions 
of the 81 holes. 

(2) Mathematical Interlude
The purpose of this section is partly to introduce the 
terminology and explain the methods used here, but mainly 
to spell out the details of how we have applied them. If you are 
already familiar, or don’t want to get involved with this topic, 
skip this section. It will still be here if you change your mind!

While it is our purpose to determine the best value of N, it 
is of at least equal importance to accompany N with a reliable 
estimate of its uncertainty. We make the usual assumption 
that the errors are normally distributed and quote them 
throughout as standard errors. 

For M independent estimates of equal weight, the standard 
error of the mean, SEM, is given by SEM = [SSR/(M(M−1)]½, 
where SSR denotes the sum of the squares of the residuals. 
(The reason for emphasising independent with italics will 
emerge in the next section.) 
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When U unknowns are to be determined simultaneously 
from M independent observations, each observation provides an 
equation of condition in the U unknowns. We solve these by 
the method of least-squares, which involves the formation and 
inversion of a normal equation’s matrix. 

In this case the standard error of each unknown is given by 

SE = [SSR × L/(M−U )]½ 

where L denotes the term on the leading diagonal of 
the inverse normal equation’s matrix corresponding to the 
relevant unknown; the quantity (M−U ) is the number of 
degrees of freedom. For a simple mean, U = 1 and L becomes 
1/M, thus reverting to the SEM formula given above.

The least-squares method is described, together with 
a FORTRAN program for its implementation, by Malin, 
Barraclough and Hodder3. It can be directly applied only 
if the equations to be solved are linear, i.e. of the form 
A1.X1+ A2. X2 + A3.X3 + … = B, where A1, A2, A3, …, and B are 
numerical quantities, and X1, X2, X3 … are the unknowns to 
be determined. 

For non-linear equations, such as those encountered in the 
present study, for example the equation of a circle of radius R 
and centre (X, Y ) through (xm, ym), (xm − X )2 + ( ym − Y )2 = R2 (see 
BTDR, p107), we first need to linearise them before solving 
for X, Y and R. 

To do this we approximate R, X and Y by R0, X0 and Y0, 
where R = R0 + δR, X = X0 + δX and Y = Y0 + δY. 

On the assumption that the approximation is close to the 
solution, δR, δX and δY will be sufficiently small that we may 
disregard terms involving their squares and higher powers.

Substituting in (1), expanding, rearranging and dropping 
terms in δR2, δX 2 and δY2, we obtain 
(X0 − xm)δX + (Y0 − ym)δY − R0.δR = ½[R0

2 − (X0 − xm)2 − (Y0 − ym)2].
This is a linear equation of the form A1.δX + A2.δY + A3.

δR = B, where δX, δY and δR are the unknowns to be 
determined by minimising the sum of the squares of the 
residuals. Improved estimates of X, Y and R are given by 
X0 + δX, Y0 + δY and R0 + δR. If the corrections are large, the 
process can be repeated with the improved estimates of X, Y 
and R in place of X0, Y0 and R0, and so on until convergence 
is achieved. 

If convergence is slow, a successive over-relaxation factor 
(SOR) may be introduced to speed it up.

In combining errors, we use the usual rules that apply when 
the error is small compared with the quantity with which it is 
associated (for the relevant quantities here it is typically c. 1%). 
In particular, the product of A ± a and B ± b is taken to be 
AB ± (A2b2 + B2a2)½ and the quotient as A/B ± (A2b2 + B2a2)½ / B2.

 (1)
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(3) The BTDR Analysis, With Comments
The data of BTDR are the (x, y) coordinates of the centres of 
the 81 extant holes, which they have provided in the Harvard 
Dataverse repository4. Each datum is the mean of from three 
to eight measures, repeated until consistency was achieved. 

We do not have the means to measure the positions of the 
holes for ourselves, but it is clear from their description of the 
process that BTDR have done a careful and thorough job, 
and to a higher precision (0.00001 mm) than that to which the 
maker could have aspired. 

The holes are assigned by BTDR to eight sections, denoted 
S0 to S7, divided by apparent mechanical breaks in the dial 
plate. We do not dispute their division of the holes into these 
sections. However, in §5, we examine the possibility that the 
movement between adjacent sections may in certain cases be 
negligible.

The points are plotted to the nearest 0.1 mm (limited by 
pixel-size) in Figure 1 (c.f. BTDR (Figure 2), reproduced 
below on p145), together with a red circle to illustrate the 
closeness of fit of all the points to a circle, even without taking 
account of possible discontinuities between sections.

other than the two terminal holes, contributes to two 
estimates. This effect significantly reduces the number of 
independent estimates, so their SE is underestimated. This 
effect is quantified in §4.

For their determination of R, BTDR restrict their study to 
the 37 holes of the largest unbroken section, S3, from which 
they select triplets of holes whose hole-numbers we denote (a, 
b, c) where 32 < a < b < c < 70. They omit those triplets where 
the chord-length is less than ‘half the width of the arc’, which 
requires that every triplet should span at least 19 holes. 

So:
 a can take any value from 33 to 51;
 b can take any value from (a + 1) to (c − 1);
and c can take any value from (a + 18) to 69 (inclusive in 

all cases).

Thus, the total possible number of distinct triplets is 4370, 
whereas BTDR quote the number of such triplets as being 
26,220, which is six times too large. It would appear that they 
have considered (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, 
b, a) as separate triplets.

Their description of their analysis of 
each triplet is somewhat confusing. We 
understand the gist of it to be that each 
triplet provides three equations of the form 
R2 = (X − xn)2 + (Y − yn)2, where n takes the 
values a, b and c. The three equations are 
solved exactly for the three variables R, X and 
Y. It is from these values of R, X and Y that 
they have derived the means and standard 
errors of these quantities.

From the data given in their ‘Table 1’  
and the associated statistics it appears that 
BTDR have assumed that there are 26,220 
independent values, whereas, since the data 

for S3 comprise only 37 values each of x and of y, the total 
number of independent data is 74. 

Each equation requires both x and y for hole n so the 
maximum number of independent equations is M = 37. 

In determining the three unknowns R, X and Y, a further 
three degrees of freedom are used reducing the number to 
M−3 = 34. Thus, it would appear that they have underestimated 
the SE of their R value by a factor of (26220/34)½ ≈ 28. 

This would appear to be the basis of their remark (p107,  
col. 1) that ‘…the extant arc is sufficiently accurate to determine 
the radius of the original circle’ [and hence its circumference] 
‘within a very close approximation’. The importance of this is 
that the validity of their TOST test is dependent on just such 
a close approximation.

The effect of the triplet method on the mean value of R is 
less dramatic, but still worthy of comment. The number of 
triplets to which a hole contributes varies with hole number. 
The outermost holes, Nos. 33 and 69, each occur in 494 
triplets. Nos. 34 and 68 in 478 triplets, and so on decreasing 
by 16 with each step towards the central three holes, Nos. 50, 
51 and 52, each of which occurs in 222 triplets. This leads 
to a weighting that changes linearly between the outermost 
holes and the central one by a factor > 2.2. Therefore, it is 
not appropriate to give equal weight to each triplet, as BTDR 
appear to have done.

For the above reasons, we considered it desirable to do an 
independent analysis of the data.

Figure 1. Plot of the (x, y) data of BTDR, pixel-limited here to the nearest 
tenth of a millimetre. Their hole numbers, 1 to 81, are indicated below the 
curve and their section-numbers, S0 to S7, above the curve. The red curve 
is part of a circle of radius 77.5 mm eye-fitted to the curve. 

The objective of BTDR was to determine D, the mean 
distance between adjacent holes, and R, the radius of the 
circle on which the holes were made. The number of holes, N, 
in the original circle can then be deduced from the relation

 N = π/arcsin(D/2R) 

Values of D have been calculated by BTDR for pairs of 
holes within sections S1, S2, S3, S5 and within the combined 
sections S6/S7 (these 74 estimates of D are included in the file 
with the (x, y) data). 

Having re-calculated from scratch, we concur that their 
mean and standard error of the mean (SEM), as derived by 
their arithmetical method, is 1.365 ± 0.015 mm. However, 
we have reservations about their method. The first is that 
equation (2) is strictly valid only if both holes defining an 
estimate of D are equidistant from the centre of the circle. 
If one hole is distant R from the centre and the other at a 
different distance, whether greater or less than R, D will be 
overestimated. This small, but systematic effect will inevitably 
lead to an overestimate of the mean value of D and hence an 
underestimate of N. This issue is addressed in §5. 

The second reservation is that the 74 estimates are not 
independent (see previous section), since each hole in a section,  

(2)
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(4) Our Analysis
Recognising that the BTDR data are unlikely to be superseded 
in the foreseeable future, we consider it to be important to 
extract as much information as possible by using all the data, 
rather than just S3 and, so far as is possible, to give equal 
weight to the x and y values for every hole.

Our re-analysis of D is closely similar to that of BTDR, 
being based on the same set of 74 estimates. The differences 
are that we equalised the contribution from each hole by 
giving all the D estimates a weight of 0.5, except the ten that 
involved the first and last holes in a section, which were given 
weight 0.75. 

The number of independent holes is estimated as follows. 
By pairing the 1st and 2nd, 3rd and 4th, 5th and 6th, etc 
holes of a section with an even number of holes, h, it is clear 
that there are h/2 pairs of adjacent holes to which each hole 
contributes once and only once. When h is odd the number is 
(h−1)/2, with one hole un-paired. 

To compensate for this, we allow these odd-holed sections 
an extra 0.5, thus assigning h/2 independent estimates to 
every section, even or odd, resulting in a total of M = 40 
independent estimates. The weighting also sums to 40 and for 
similar reasons, but it must be emphasised that the weighting 
is to adjust the relative rather than the absolute contribution 
of each estimate; i.e., all the weights could be multiplied by 
any arbitrary constant without affecting either the mean or 
the SE. Our revised analysis gives D = 1.363 ± 0.021 mm.

This is only marginally different from BTDR, but with the 
differences of both mean and SE in the expected directions.   

For R, our initial approach is to fit the best circle through 
the holes of each segment separately. The method is detailed 
in §2. The method could not be applied to sections with fewer 
than three holes, and the 3-hole section S5 gave an exact 
solution, rendering it useless for statistical purposes since 
it had no error estimates. Table 1 gives the results for the 
remaining sections S1, S2, S3 and S7. The final entry is the 
mean of these four sections, weighted inversely as the square 
of their SEs.  

(5) Further Analysis
From simple geometrical considerations, the calendar ring 
could have slid in its channel only if both ring and channel 
were circular (or linear, which is clearly not the case), so R 
must be the same for each sector. 

This important constraint has not been imposed in the 
foregoing analysis. Neither has the hypothesised constraint 
that the holes were, as nearly as the maker was able, uniformly 
spaced around their circle, though that was implicit in the 
derivation of D. Not all the holes were used (74 of 81) and, 
because the mean was weighted according to the variance, 
each hole was not given equal weight.

In an attempt to rectify these deficiencies as far as possible 
(at this stage, there is no obvious way of incorporating the 
single-hole sections other than by arbitrarily tagging them 
onto an adjacent section), we re-state the equations for xm 

and ym in terms of all the unknowns, and solve for them all 
simultaneously. 

We specify the separation between adjacent holes by the 
angle θ, (see Figure 2), rather than D for two reasons:

1. θ is not affected by the tendency to overestimation that 
affects D (see §3).

2. θ is directly related to N by N = π/θ without needing 
knowledge of either R or D. 

The purpose of the analysis is to determine from the data 
the best least-squares values of R, θ, αs , Xs and Ys (see Figure 2),  
where s takes the values 1, 2, 3, 5, 6 and 7, corresponding to 
section numbers. 

The data comprise (x, y) values for each hole measured from 
an arbitrary origin and with arbitrary orientation of the axes. 
Sections S0 and S4 are omitted because each consists of a 
single hole. Each x and y contributes an equation of condition, 
so we have 158 equations to solve for 20 unknowns.

Hole Nos. R X0 Y0

S1 2–23 77.42 ± 0.93 79.75 ± 0.65 136.09 ± 0.68

S2 24–32 52.48 ± 2.79 68.11 ± 1.33 113.79 ± 2.46

S3 33–69 77.31 ± 0.29 79.86 ± 0.04 135.67 ± 0.30

S7 76–81 75.97 ± 20.74 83.59 ± 7.23 135.09 ± 19.45

S1, 2, 3, 7 77.09 ± 0.28

Table 1. Means and SEs of R, X0 and Y0 (in mm) for sections and for all-
values. Hole numbers are inclusive.

By substituting the above values of D and R into equation 
(2) we obtain N = 354.8 ± 5.6. On the assumption that the 
holes beneath the calendar ring are a representative sample 
of those round a uniformly divided circle, and that the holes 
match the divisions on the calendar ring, the hypothesis that 
there were 365 of them becomes very unlikely. 

The probability that N is 1.8 standard errors greater than 
354.8 is only 1 in 28.6 The 354-division hypothesis of BTDR, 
on the other hand, is well within one standard error. If this 
were a two-horse race, 354 would be the hot favourite and 365 
the 28-to-1 outsider. 

While this result is persuasive, it is tempting to attempt to 
extract a little more information from the data.

Figure 2B. Sector 
with an even number 
of holes.

Figure 2A. Sector 
with an odd 
number of holes.x
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The geometry of two sections, one with an odd number of 
holes and one with an even number, is illustrated in Figure 2.  
The bold line is that joining the centroid of the points, (x, y), to 
(X, Y ), where x, denotes the mean of all the x’s in the section 
and y the mean of the all the y’s. 

The direction of the line is from (X, Y ) towards (x, y); it 
makes an angle α with the x-axis, as shown in Figure 2. The 
angle 2θ subtended at (X, Y ) by D is the same for all pairs of 
adjacent holes in all segments; to a close approximation its 
value in radians is D/R. (The exact relation is θ = arcsin D/2R, 
but, since θ ≈ 0.5º, the approximation is in error by less than 
13 parts in a million.) 

From Figure 2A it may be seen that, for hole h, 
x = X + R cos(α + 4θ) and y = Y + R sin(α + 4θ), and from  
Figure 2B that x = X + R cos(α − 3θ) and y = Y + R sin(α − 3θ).

Similar equations may be obtained for all of the holes. In 
general, for hole h in a section that goes from holes a to b, 
inclusive, the line joining hole h to (X, Y ) is of length R and is 
at an angle to the x-axis of γ = α + mθ, where m = (2h − a − b). 

The equations are x = X + R cosγ  and  y = Y + R sinγ.
Linearising these equations by the same process described 

in §2, we obtain:

cos γ δR − sin γ R0 mδθ − sin γ R0 δα + δX = x − (X0 + R0 cos γ)
and 
sin γ δR + cos γ R0 mδθ + cos γ R0 δα + δY = y − (Y0 + R0 sin γ).

The importance of choosing realistic initial values, those 
with subscript  0, has already been mentioned. From §4 we 
know that D = 1.363 ± 0.021 and that N is likely to be either 
365 or 354. To avoid favouring either of these options, we 
select their mean: N = 359.5. Since D/2R = θ = π/N, this leads 
to our choice of θ0 = 0.008739 radians and R0 = 78.1 mm.

For initial values of α, X and Y for the sections, we return 
to Figure 2. We choose α0 such that tan α0 = − (xa − xb)/( ya− yb), 
the gradient of the perpendicular bisector of the line joining 
the first and last points of the sector. 

For an odd numbered section, (X, Y ) is the point on a line of 
slope tan α0 that passes through the middle hole, (xh, yh), where 
h = (a + b)/2, and is distant R0 from that hole. 

The ambiguity in direction is resolved by inspection. For 
an even numbered section, (xh, yh) is replaced with the mean 
position of the two points closest to the centre of the section. 
Thus X0 = xh + R cosα0 and Y0 = yh + R sinα0. 

The resulting values of α0, X0 and Y0 for each sector are given 
in Table 2, together with the values of α, X and Y obtained 
from an iterative least-squares solution of the equations of 
condition. The resulting centres, (X, Y ), are plotted in red  
on Figure 3.

Initial 
estimates

After iteration

Section α0 X0 Y0 α X Y

S1 3.94315 80.144 136.670 3.94359 ± 0.00274 79.685 ± 0.779 136.062 ± 1.492

S2 4.21835 80.193 136.399 4.21834 ± 0.01046 79.905 ± 0.882 135.721 ± 1.238

S3 4.62606 80.081 136.474 4.62731 ± 0.00125 79.868 ± 0.135 135.704 ± 1.115

S5 4.97718 81.444 136.908 4.97756 ± 0.05735 81.505 ± 4.290 136.126 ± 1.007

S6 5.02941 81.273 136.568 5.02942 ± 0.11470 81.510 ± 8.436 135.845 ±  ----

S7 5.07640 82.775 137.076 5.07439 ± 0.01940 83.168 ± 1.904 136.419 ± 0.395

R0 78.1 θ0  0.008739 R 77.342 ± 1.092 θ  0.0084335 ± 
0.00026544

Table 2. Initial estimates and final values of the all-in-one analysis. 

The sum of the squares of the residuals, 1.699 mm2, 
indicates that this 20-variable model provides an excellent 
fit to the data, with the RMS difference between the model 
and the individual x and y observations being a mere 0.1mm. 
However, with so many variables, some of them determined 
from very few data (for example, for S6, just four equations 
contribute to the determination of α, X and Y; S5 is not much 
better) the conditioning is poor, so it is unsurprising that the 
standard errors are relatively large. Nevertheless, the solution 
converges rapidly and stably to the values given in Table 2. 

These results enable us to examine the relative movements 
of the different sections. Differences in (X, Y ) between sections 
will indicate a part of such movement, but any rotation of a 
section about its centre, (X, Y ), will not affect the position of 
that centre. However, such rotation would be revealed by the 
values of α. 

To illustrate, consider two sections A and B, with mean 
hole-numbers mA and mB and the same centre (X, Y ). If there 
were no rotation of A relative to B, then the difference αA − αB 
should be insignificantly different from Δ = 2θ(mA − mB). 

In the case of S2 and S3, (αA − αB) − Δ = −0.021 ± 0.035, 
indicating negligible rotation. The difference between the 
centres is 0.04 mm; again negligible. Thus, we deduce that 
there has been no significant movement between S2 and S3. 
This is our justification for combining S2 and S3 into a single 
set, denoted S23. The corresponding figures for S5 and S6 are 
also negligible in comparison with their SEs, so we combine 
them to form S56.

Hole 1 (S0) has no (X, Y ) associated with it, but its distance 
(D = 1.382) from hole 2 is well within the range of the 74 other 
D values, and its distance from the centre of S1 (76.609) is 
within one SE of R. For this reason, we combine S0 and S1 
to form the set S01. Similar evidence from hole 70 is our 
justification for uniting S4 and S56 to form S456.  

We now have reduced the number of sets from 6 to 4: 
holes 1–23 for S01, 24–69 for S23, 70–75 for S456; and 76–81 
for S7. These include all the data and reduce the number of 
unknowns from 20 to 14, thus improving the conditioning. 

The results of analysis, again with the same initial estimates 
of D and θ that favour neither N = 354 nor 365, confirm this 
by yielding appreciably smaller SEs (R = 77.057 ± 0.0796; 
θ = 0.008896 ± 0.000093) with only a marginal increase of 
root mean square from 0.10 to 0.13 mm. The (X, Y ) positions 
are marked in blue on Figure 3. 

Can we take this process further? The grouping of blue 
points in Figure 3 suggest and the numerical data confirm 
that we may yet further reduce the number of variables from 
14 to 8 by combining S01 and S23 into S0-3, and S456 and 
S7 into S4-7. 
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Figure 3. Plots of (X, Y) for each of the sections. Those in red are for the six-section analysis, in blue 
for the four-section analysis, and black for the (final) two-sectional analysis. The ellipses enclose all 
points within one standard error of the two-section values.

In the present study we have 
reexamined the BTDR analysis 
We find a number of disagreements 
with their methodology, particularly 
concerning their treatment of errors, 
and have repeated their analysis using 
their data on the (x, y) coordinates of 
the 81 extant holes, but with our own 
adjustments to obtain the results given 
in the second line of Table 4. 

We then re-formulated the problem 
in terms of θ instead of D, giving equal 
weight to each x and each y value, and 
solving all the equations simultaneously 
by the method of least squares. The 
somewhat disappointing (because of the 
larger SEs) results are given in the third 
line of Table 4. 

Nevertheless, the results provided 
information on the movement, or lack of 
movement, between sections that allowed 
us to combine sections with consequent 
improvement in the conditioning of the 
equations and diminution of SEs, which 
has led to the results given in lines 4 and 
5 of Table 4.  

These, then, are our results, with 
that given in line 5 our best estimate. 
The progression that led to this solution 
has been summarized here and detailed 
in the preceding sections. That the 
2-section model reported in line 5 of 
Table 4 represents the best overall fit to 
the data is confirmed by the very small 
SEs. The value of N has to be integral 
and the SE of 1.5 indicates that there is 
less than a 5% probability that N is not 
one of the six values in the range 350–
355. The chances of N being as high as 
365 are less than 1 in 10,000.6

While other contenders cannot be 
ruled out, of the two values that have 
been proposed for N on astronomical 
grounds, that of BTDR (354) is by far 
the more likely. 

As before, R and the inter-sector D values are comfortably in range, so there is 
no evidence of rotation or translation between the segments to be combined. The 
results are given in Table 3 and are plotted in black on Figure 3, together with 
ellipses with semidiameters of 1 SE. 

This is our final analysis, since there is a significant shift between the two sets, 
precluding further merging. It is also the model that puts the tightest constraints on 
θ and hence on N.

Initial 
values

After iteration

Section α0 X0 Y0 α X Y

S0-3 4.33757 80.779 136.177 4.33949 ± 0.00071 80.041 ± 0.136 135.698 ± 0.322

S4-7 5.01920 83.267 137.218 5.01339 ± 0.00958 83.709 ± 0.712 136.622 ± 0.294

R0 78.1 θ0  
0.008739

R 77.352 ± 0.324 θ  0.0089163 ± 
0.00003875

Table 3. Initial estimates and final results from a two-section analysis. 

D (mm) R (mm) θ (0.0001 rad) N

1) BTDR 1.365 ± 0.015 77.493 356.71

2) Weighted mean 1.363 ± 0.021 77.09 ± 0.28 354.8 ± 5.6

3) 6 sections 77.34 ± 1.09 8.843 ± 0.265 355.2 ± 10.7

4) 4 sections 77.06 ± 0.08 8.896 ± 0.093 353.1 ± 3.7

5) 2 sections 77.35 ± 0.32 8.915 ± 0.053 352.3 ± 1.5

Table 4. Collected results of BTDR and the present study.

(6) Summary and Conclusions
From a study of the holes in the faceplate below the calendar wheel of fragment C 
of the Antikythera Mechanism, BTDR have deduced that there were originally 
354 of them. They take this to be the number of days in the calendar used in the 
Mechanism, as opposed to the traditional belief that it was 365. Despite their study 
and the evidence they quote of other dissident authors, their figure is still far from 
universally accepted. Their result and the values of D and R from which it is derived 
are given in the first line of Table 4.
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